Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction

  • A Dominic Fortes
  • Published 2015 in Acta crystallographica. Section E, Crystallographic communications


Time-of-flight neutron powder diffraction data have been collected from Na2MoO4 and Na2WO4 to a resolution of sin (θ)/λ = 1.25 Å(-1), which is substanti-ally better than the previous analyses using Mo Kα X-rays, providing roughly triple the number of measured reflections with respect to the previous studies [Okada et al. (1974 ▶). Acta Cryst. B30, 1872-1873; Bramnik & Ehrenberg (2004 ▶). Z. Anorg. Allg. Chem. 630, 1336-1341]. The unit-cell parameters are in excellent agreement with literature data [Swanson et al. (1962 ▶). NBS Monograph No. 25, sect. 1, pp. 46-47] and the structural parameters for the molybdate agree very well with those of Bramnik & Ehrenberg (2004 ▶). However, the tungstate structure refinement of Okada et al. (1974 ▶) stands apart as being conspicuously inaccurate, giving significantly longer W-O distances, 1.819 (8) Å, and shorter Na-O distances, 2.378 (8) Å, than are reported here or in other simple tungstates. As such, this work represents an order-of-magnitude improvement in precision for sodium molybdate and an equally substantial improvement in both accuracy and precision for sodium tungstate. Both compounds adopt the spinel structure type. The Na(+) ions have site symmetry .-3m and are in octa-hedral coordination while the transition metal atoms have site symmetry -43m and are in tetra-hedral coordination.


    1 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)